34 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-21, NO. 1, JANUARY 1973

width is of little importance. The possibility of shifting the
free-running frequency (through varactor tuning) in ap-
proximate synchronization with the change in frequency of
the injected signal has not been investigated for subharmonic
injection locking in this paper; with such a method, injection
locking would provide only a part of the locking mechanism
and locking bandwidth could be increased. The theory pre-
sented in this paper would be valid for that part of the
locking that can be attributed to injection locking.
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Microstrip Dispersion Model

WILLIAM ]J. GETSINGER

Abstract—The assumption that the quasi~-TEM mode on micro-
strip is primarily a single longitudinal-section electric (LSE) mode
leads to a transmission line model whose dispersion behavior can be
analyzed and related to that of microstrip. Appropriate approxima-
tions yield simple, closed-form expressions that allow slide-rule
prediction of microstrip dispersion.

NOMENCLATURE

a, ', b, b, s, w Mechanical dimensions of conventional
L 'microstrip and the LSE mode model (Fig. 2).

; : t

s .| Speed of light in free space=11.8 in/us.

c’ Capacitance per unit length of microstrip
line at zero frequency.

D Width of the zero-frequency parallel-plate
microstrip equivalent structure.

I Frequency.

fi Frequency of inflection of the dispersion
curve.

fo Parameter of the dispersion function.

G Empirical parameter used to simplify the
microstrip dispersion function.

k, Free-space wavenumber.
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L Inductance per unit length of microstrip line
at zero frequency.

Zs Microstrip characteristic impedance at fre-
quency f.

Zy Microstrip characteristic impedance at zero
frequency.

% Propagation constant along the microstrip
line.

Ya Transverse propagation constant in the air-
filled part of the microstrip model.

Vs Transverse propagation constant in the di-
electric-filled part of the microstrip model.

€ Microstrip effective dielectric constant (a
function of frequency).

€ Microstrip effective dielectric constant at
the inflection point.

€00 Microstrip effective dielectric constant at
zero frequency.

€ Permittivity of free space=28.85X10712
F/m.

€ Substrate relative dielectric constant.

Mo Impedance of free space =376.7 2.

Mo - Permeability of free space=231.92 nH/in, or

4w X107 H/m.
® Radian frequency.
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INTRODUCTION

ROPAGATION on microstrip is usually handled as
Pthough the line were filled with dielectric and carried a

TEM mode. This is an adequate representation except
that the effective dielectric constant changes slowly with fre-
quency, making microstrip dispersive [1].

Both analytical [2] and empirical [3], [4] attempts to
describe microstrip dispersion have been published. (A good
bibliography is given in [4].) The analytical techniques have
been nearly exact, but have required numerical solution on
large electronic computers. Thus these techniques have been
too ponderous for practical engineering application. The
empirical techniques, on the other hand, have had limited
ranges of applicability and inadequate theoretical founda-
tions for confidence in application.

With the intention of achieving analytical simplicity, this
paper considers microstrip propagation as a single longi-
tudinal-section electric (LSE) [5] mode. Physical reasoning
indicates that this might be a practical approximation for
investigating dispersion on microstrip. However, the struc-
ture of microstrip precludes analysis by direct means. Thus
a structure (the model) has been conceived that resembles
microstrip in all but shape, but whose LSE-mode propagation
can be analyzed directly. It is assumed that the propagation
characteristics (dispersion) of the model can be applied to
microstrip by appropriate adjustment of parameters.

Since it does not follow from theory that the dispersion
functions of the two structures must be the same, as it does
for differently shaped, homogeneously filled waveguides, the
validity of the model must be tested by its agreement with
measured dispersion of actual microstrip.

It turns out that the model yields a simple closed-form
algebraic expression that closely describes measured disper-
sion in microstrip. It is found that only one parameter in
addition to those available from static analyses of microstrip,
such as the MSTRIP program [6], is necessary to describe
microstrip dispersion.

For convenience, the results of this paper are illustrated in
Fig. 1. The symbols are defined in the Nomenclature list. The
dispersion relationships shown in Fig. 1 have been found to
agree with a theoretical prediction [2] based on coupled inte-
gral equations, with published [1] measurements of a 20-Q
microstrip line on a rutile (e;,=104) substrate and with mea-
surements on 0.025- and 0.050-in alumina (e, = 10) substrates.

THE ANALYTICAL MODEL

A conventional microstrip structure is shown in Fig. 2(a).
The fields are concentrated around the edges of the strip and
in the dielectric beneath the center strip. Near the strip
edges, the magnetic field is predominantly normal to and the
electric field predominantly tangential to the air—dielectric
interface. This is characteristic of the LSE mode [5], [7].
The structure of Fig. 2(a) is intractable to direct analysis on
this basis, but its boundaries can be distorted to result in a
model, shown in Fig. 2(b), that can be analyzed.

The electric field lines emanating from the lower surface
of the center strip of the microstrip in Fig. 2(a) pass only
through the substrate dielectric, as do the electric field lines
emanating from the center portion of the model of Fig. 2(b).
The electric fields emanating from the upper surface of the
center strip of the microstrip occupy a much larger space,
which is mostly filled with air. This space is approximated
by the large, air-filled end sections of the model. The mag-
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netic wall (indicated by a dashed line) above the center
strip of Fig. 2(a) is split and the upper wall of the center
strip is unfolded at the edge, stretched out, and bent to form
the end-section boundaries of Fig. 2(b). Thus the model con-
sists of one parallel-plate transmission line, which has a
dielectric constant ¢, width 2s, and height b, connected with-
out junction effect to other parallel-plate transmission lines
that have a dielectric constant of one, width &/, and height d’.

The heuristic assumption made is that because the two
regions, air filled and dielectric filled, of the model and the
microstrip are grossly similar, the two structures will have
the same dispersion behavior for the same mode of propaga-
tion. It is clear that junction capacitance could be included
at the steps of the model to make it more realistic, or more
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like microstrip, but this would greatly complicate the analysis
and has not been found necessary for practical results.

The model is, after all, only an intuitive aid in setting up
the simplest mathematics that lead to a useful dispersion
relation; it need not be physically realizable.

The analysis proceeds by forcing the model to have the
same electrical characteristics at zero frequency as the micro-
strip. (These characteristics can be found from well-known
and widely available computer programs, such as MSTRIP
[6].) Next, a transverse resonance analysis of the model
relates the propagation constant (or effective dielectric con-
stant) to frequency. A closed-form approximation of this
function is then found and compared with measured micro-
strip dispersion to determine the unknown parameter b'/b
[see Fig. 2(b)]. Finally, the results show that ’/b and related
parameters are nearly constant or linear with characteristic
impedance. Hence, it is possible to derive simple formulas
that can be used to predict the dispersion of microstrip trans-
mission lines.

ZERO-FREQUENCY RELATIONSHIPS

A static analysis such as the MSTRIP program [6] is em-
ployed to yield the effective relative dielectric constant e
and the characteristic impedance Z, for given w/b, €, and
possibly other dimensional parameters, such as strip thick-
ness or proximity of an upper ground plane. [See Fig. 2(a).]

The inductance L’ and capacitance €’ per unit length of
the microstrip can be written as

Lz, _

— = — Ve (1a)
Mo Mo

C' nVew

¢ _ Ve (1b)
€o ZO

respectively, where

Zo

Microstrip dispersion parameters,

P 31670 o)

€

Mo =

The subscript o indicates free-space values of the constitutive
parameters, while the subscript 0 indicates zero-frequency
values of the characteristic impedance and effective dielectric
constant.

Inductance and capacitance per unit length for the LSE
mode! [Fig. 2(b)] at zero frequency can be written as

£’ _ 1
wo 20@/8) + (s/8)]

(3a)

¢ (“' +a3) (3b)
R e~
& ¥ b
respectively. Equating equivalent parameters yields
a o €& — €0
o 270\ e € — 1
N Mo €q0 — 1
o T (4b)

b 2Z0vew € — 1

TRANSVERSE RESONANCE SOLUTION

The sum of the admittances on the left and right of either
air—dielectric interface of Fig. 2(b) must equal to zero ac-
cording to the transverse resonance [5], [7] technique. The
propagation constants are related by

Y+ v+ R2P=0 (%)
in the air-filled section and by
'Ysz + 72 + ehko? = 0 (6)

in the dielectric-filled section. In (5), (6), v is the propagation
constant along the transmission line and applies to both air-
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and dielectric-filled sections, while v, is the constant in the
transverse direction in the air-filled section and <y, is the con-
stant in the transverse direction in the dielectric-filled sec-
tion. Finally,

k= w/c N

is the free-space wave number.

The vertical dashed lines of Fig. 2(b) indicate magnetic
walls or open-circuit boundaries. The characteristic admit-
tances in the two sections are proportional to their propaga-
tion constants and inversely proportional to their heights.
Thus the sum of the admittances at the interface is

Ya Vs
z; tanh v.a’ + —b— tanh y.s = 0.

(8)

The following approximation is used to solve the preceding
transcendental equation:

1
(1/2) + (/3)

Equation (9) is in error by about 1.5 percent at x=1 rad.

As an example of the range of applicability, v,s=1.0 for a

25-Q line on a 0.05-in alumina substrate at about 10 GHz. The

use of higher impedances and thinner substrates raises the

frequency at which an error of this magnitude occurs.
Substituting (9) into (8) yields

v'/d  b/s a't’ + sb
2 782 3

tanh z =

(9)

(10)
Ya

after some manipulation.
The longitudinal propagation constant can be expressed in

G

—7I'_2 [(660 - 1) + (b,/b)z(es
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When (16) is solved for ¢, —¢, as the dependent variable, a
quadratic results. Its solution is

B 4(e, — 1)/s
€& —€=—<1— — 17
U=V See g 07
where
N (a+s)/as
B={(e,— 1)+ {[a(b’/b)2~|-s]/3}ko2 (18)

and the negative root has been selected because it is phys-
ically meaningful.

Equation (17) can be simplified by observing that the
second term under the radical is considerably less than one
for practical cases and then by using the usual square-root
approximation. (For a 25-Q line on a 0.05-in alumina substrate
at 12.5 GHz, the error is about 5 percent.) After a small
amount of algebra, the result is

[(«—1)a]/(a+s)
1-+ko*(as/3) (e — 1) { [a(¥'/b) >3]/ (a-+5)}

Substituting (4) and (15) into (19) makes it possible to
express (19) in terms of known quantities, except for the
parameter b'/b; ie.,

€= € —

- (19)

€5 — €gp

L+ G/

€ = €

(20)
where
Zo
2u.b

(21)

and

- e30)](560 - 1) (es - e60) .

T 12

Geo(fs

terms of the effective dielectric constant; i.e.,
v = —kj. (11)
Substituting (11) into (5) and (6) results in
Yo = k(. — 1)
vt = — k(e — €.
Substituting (12) and (13) into (10) yields
b/s b'/a a'd’ + sb

= ko? 14
€ — 1 3 (14)

(12)
(13)

€ — €

which is the basic dispersion relationship.

The unknown parameters ¢’ and b’ can be reduced to a
single unknown by assuming that ¢ is the solution of (4a)
when b’ is given the value of b, which is known. That is,

=(5)
a =al—
b

where b’/b is the new unknown parameter. When (15) is sub-
stituted into (14), the basic dispersion relationship becomes

/ 2
1/s B 1/a _ a(b'/8)? + s B (16)
€& — € € — 1 3

(15)

i (22)

Nonmagnetic substrates are assumed; therefore, u,=31.9186
nH/in. Equation (20) is the final analytical expression for dis-
persion of microstrip. Investigation of experimental results
shows that G approximates unity.

EvALUATION OF PARAMETERS

Dispersion curves for microstrip lines on alumina sub-
strates 0.025 and 0.050 in thick were measured. The micro-
wave measurements were made on ring resonators [8], and
the 1-MHz points were determined from the MSTRIP program
by using the value of the substrate dielectric constant e
found from capacitance measurements of each fully metal-
lized substrate. These data were used to calculate the multi-
plier of f2 in (20) that forced a fit at 10 GHz for each micro-
strip line. Then, values of #’/b were calculated using (21) and
(22). The results are shown in Fig. 3, which indicates that
b'/b~3 for characteristic impedances above about 35 Q. The
experimentally determined values of G are also plotted in
Fig. 3.

Equations (20) and (21) clearly demonstrate the nature
of the dependence of the effective dielectric constant on the
substrate thickness b and microstrip characteristic impedence
Zo.

In many engineering applications of microstrip, disper-
sion can be treated as a correction factor to the zero-frequency
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effective dielectric constant €.0; thus only approximate values
are required. In such situations, it is sufficient to assume that
G=1.0 in (20). For greater accuracy, the curves in Fig. 3,
or an equivalent based on other careful measurements, can
be used. A linear approximation of curves of Fig. 3 is

G = 0.6 + 0.009 Z,. (23)

THE INFLECTION PoINT

Study of the dispersion function (20) can provide some
general information about typical dispersive behavior. Equa-
tion (20) shows that the effective dielectric constant goes from
a value of €, at zero frequency to a value of ¢ at infinite fre-
quency, in agreement with theory [2], and that the slope of
€, with respect to frequency is zero at both extremes. The
frequency of the maximum slope between these two points is
called the inflection point. The requirement that the second
derivative of €, with respect to frequency must equal zero
gives the inflection frequency

e
V3G
Using (24) in (20) yields the value of the effective dielectric

constant ¢, at the inflection frequency:

f

2

(24)

€ = 1€ + 3e.0) (25)
and the slope with respect to frequency at e;:
ol L e e (26)
df ly=s,

A graphical construction that makes it possible to draw a
straight line tangent to the inflection point of the dispersion
curve has been shown in Fig. 1.

It can be observed that the dispersion and the inflection
relationships agree closely with measured data. Equations
(24) and (25) do in fact predict the frequency and effective
dielectric constant values at which measured dispersion
curves have maximum slope, and that slope is in very good
agreement with (26) for an ideal dispersion function. This de-
tailed agreement between theory and experiment supports
the validity of the LSE model of microstrip propagation.

COMPARISON WITH MEASUREMENTS

The theory developed in this paper will first be compared
with the theoretical prediction of Zysman and Varon {2] for
a microstrip line having the following characteristics: e,
=97, €0=06.50, Z¢=>50, and 5=0.05 in. The unknown pa-
rameter G will be found from the inflection point formulas
and the graphical data of [2].

Using (25) to calculate the inflection point gives ¢,;=7.3;
[2, fig. 5] then gives f;=9 GHz. Equation (24) predicts

G L 0.00412 2
I 0
Using values given above in (21) yields
Zy 50
fp=—= = 15.66 GHz. (28)
2ub 2 X 31.92 X 0.05
Substituting (28) into (27) yields
G = 0.00412 X 15.66% = 1.01, (29)

10.0
W/b=5.0
b= 025
€5=10.51
/ 1,717.25
)
9.0 W/b=25

b=.050
€5=10.1
1,-29

8.0

W/b=10

Ee < b=.025
€5=10.31
L,=48.5
. @
- W/b=0.2
7.0 ¢ b=.050
€5=10.185
. 1,=89.5
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Fig. 4, Comparison of dispersion function and measurements.

This value can be compared with the approximate value
G=1.0 or the curve-fit formula (23), which gives G=1.05.

The next problem is to determine the model parameters
of the dispersion measurements on rutile reported by Hartwig
el al. [1] The given parameters are ¢ =104, €,0=62 (calcu-
lated from capacitance measurement), 5=0.05, and Z;=20
). However, since the dispersion curve must have a zero slope
at zero frequency, an extrapolation of the measured points
on [1, fig. 3] clearly yields a greater value of e than 62. A
value of 63.5 will be used in these calculations.

Following the same procedure used in the preceding ex-
ample gives e€;="73.6 and f,~4.4, so that G/f,2=0.0172.
Equation (21) gives f,=6.22 GHz; thus G=6.222X0.0172
=0.667. The approximate formula (23) gives G=10.78. Either
value of G gives a calculated curve that is within the scatter of
the measured points. The first value of G, based on inflection
point formulas, seems to average out a little better, however,
This is reasonable because it is based in part on the data it
characterizes.

The last comparison of theory and experiment is shown
in Fig. 4. The solid-line curves were calculated from the dis-
persion function (20) by using (23) to set the value of G in
each case. The round points are values of effective dielectric
constant measured at COMSAT Laboratories. The circuits
used were ring resonators [8] on commercial 0.025- and 0.05-
in alumina substrates. In each case, the value of e, was found
by extrapolating the curve of microwave measurements to
zero frequency. Then, curves generated by the MSTRIP pro-
gram [6] were used to determine a value of € for the ap-
propriate width-to-height ratio of the line. The shapes and
values of the experimental and theoretical curves are found
to be in good agreement. )
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LIMITATIONS AND APPLICATIONS

The basic hypothesis of this paper is that the dispersion
function (20) describes the propagation characteristics of any
microstrip-like transmission line. So far, measurements on
microstrip have supported this point of view.

A more general theoretical investigation than given in this
paper would be necessary to explore the fundamental limita-
tions on applying the dispersion function. Some points can be
considered, however.

The dispersion relation applies only to the fundamental
LSE mode. It probably holds closely only for thin (6 <A/4 in
€) substrates and strips that are not very wide (w<A/3 in
¢,) to insure that the LSE mode is dominant, but these re-
strictions seldom arise in microstrip applications. Also, the
dispersion relation takes on the correct value at infinite fre-
quency, and so there is no clearly defined upper-frequency
limit at which it no longer applies. The practical upper-fre-
quency limit of microstrip, where every junction and dis-
continuity radiate strongly via surface wave modes [1],
probably occurs before the dispersion function becomes un-
reliable.

Since the dispersion function appears to have general ap-
plicability to all structures having the same types of boun-
daries as microstrip and propagating an LSE mode, it would
be expected to hold for microstrip with or without an enclo-

sure, for the even and odd modes of the parallel-coupled
microstrip, and possibly for other quasi-TEM structures,
such as inhomogeneously loaded coaxial line. It would, of
course, be necessary to have appropriate values for €, ¢,
Ze, and G for each structure.
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Nonlinear Analysis of the Schottky-Barrier Mixer Diode

DOMINIC A. FLERI axo LEONARD D. COHEN

Abstract—The waveshape of the local-oscillator voltage compo-
nent that exists across the nonlinear junction of a Shottky-barrier
diode is a fundamental determinant of mixer performance. This
waveshape significantly differs from that of the total local-oscillator
voltage impressed across the diode terminals since it is influenced
by parasitics, particularly spreading resistance and contact induc-
tance, which exist in series with the junction, The junction-voltage
waveshapes resulting from a 9.375-GHz sinusoidal local-oscillator
generator voltage are computed for three common equivalent-
circuit models of the diode. In the first model the diode is repre-
sented by a nonlinear conductance in series with a fixed spreading
resistance. The second model includes the nonlinear capacitance
associated with the junction, and the third additionally includes the
contact inductance. In each case, the junction-voltage waveshape is
significantly nonsinusoidal. It is shown that the contact inductance
can induce a peak inverse junction voltage that greatly exceeds the
peak voltage impressed across the diode terminals. This parasitic
reactance thus can have an important bearing on the burnout proper-
ties of the mixer diode,
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I. INTRODUCTION

VER THE YEARS, a number of investigators [1]-

[6] have published detailed mathematical treatments

for determining the performance characteristics of
semiconductor diode heterodyne mixers. These techniques
basically involve the formulation of an admittance matrix or
equivalent set of parameters, which describes the linearized
small-signal current—voltage relations that exist among the
coupled-signal, image, and intermediate frequency voltage
components in the mixer. The admittance matrix facilitates
the analytical determination of mixer conversion loss, as
well as the associated RF and IF impedances. In general, the
matrix elements are functions of both the amplitude and
waveshape of the local-oscillator voltage component that
exists across the nonlinear junction of the semiconductor
diode. This waveshape was assumed to be sinusoidal by the
early investigators because it was not practical to derive the
exact waveshapes with the computational facilities then
available. This assumption has been perpetuated over the
vears and is retained even in present-day analyses. As was
pointed out by Barber [7], however, the actual waveshape of
the local-oscillator junction voltage is significantly non-



