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width is of little importance. The possibility of shifting the

free-running frequency (through varactor tuning) in ap-

proximate synchronization with the change in frequency of

the injected signal has not been investigated for subharmonic

injection locking in this paper; with such a method, injection

locking would provide only a part of the locking mechanism

and locking bandwidth could be increased. The theory pre-

sented in this paper would be valid for that part of the

locking that can be attributed to injection locking.
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Microstrip Dispersion Model

WILLIAM J. G13TSINGER

Abstract—The assumption that the quasi-TEM mode on micro- L’
strip is primarily a single longitudinal-section electric (LSE) mode
leads to a transmission line model whose dispersion behavior can be
analyzed and related to that of rnicrostrip. Appropriate approxima-

Zf

tions yield simple, closed-form expressions that allow slide-rule
prediction of microstrip dispersion. Zo

NOMENCLATURE
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a. a’. b. bf. s, w Mechanical dimensions of conventional,.. .
k

c

c’

D
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,— ~ \microstrip and the LSE mode model (Fig. 2). ~.

~ ~ Speed of light in free space= 11.8 in/ns.

Capacitance per unit length of rnicrostrip -y.

line at zero frequency.

Width of the zero-frequency parallel-plate ~.

microstrip equivalent structure.

Frequency. e,{

Frequency of inflection of the dispersion

curve. C,o
Parameter of the dispersion function.

Empirical parameter used to simplify the e.

microstrip dispersion function.

Free-space wavenumber. G
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Inductance per unit length of microstrip line

at zero frequency.

Microstrip characteristic impedance at fre-

quency j.

Microstrip characteristic impedance at zero

frequency.

Propagation constant along the microstrip

line.

Transverse propagation constant in the air-

filled part of the microstrip model.

Transverse propagation constant in the di-
electric-filled part of the microstrip model.

kflicrostri~ effective dielectric constant (a

function ~f frequency).

Microstrip effective dielectric constant at

the inflection point.

Microstrip effective dielectric constant at

zero frequency.

Permittivity of free space= 8.85 X 10–12

F/m.

Substrate relative dielectric constant.

Impedance of free space= 376.7 fl.

Permeability of free space= 31.92 nH/in, or

4-z-xl&7 H/m.

Radian frequency.
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INTRODUCTION

P

ROPAGATION on microstrip is usually handled as

though the line were filled with dielectric and carried a

TEM mode. This is an adequate representation except

that the effective dielectric constant changes slowly with fre-

quency, making microstrip dispersive [1].

Both analytical [2] and empirical [3], [4] attempts to

describe microstrip dispersion have been published. (A good

bibliography is given in [4].) The analytical techniques have

been nearly exact, but have required numerical solution on

large electronic computers. Thus these techniques have been

too ponderous for practical engineering application. The

empirical techniques, on the other hand, have had limited

ranges of applicability and inadequate theoretical founda-

tions for confidence in application.

With the intention of achieving analytical simplicity, this

paper considers microstrip propagation as a single longi-

tudinal-section electric (LSE) [5] mode. Physical reasoning

indicates that this might be a practical approximation for

investigating dispersion on microstrip. However, the struc-

ture of microstrip precludes analysis by direct means. Thus

a structure (the model) has been conceived that resembles

microstrip in all but shape, but whose LSE-mode propagation

can be analyzed directiy. It is assumed that the propagation

characteristics (dispersion) of the model can be applied to

microstrip by appropriate adjustment of parameters.

Since it does not follow from theory that the dispersion

functions of the two structures must be the same, as it does

for differently shaped, homogeneously filled waveguides, the

validity of the model must be tested by its agreement with

measured dispersion of actual microstrip.

It turns out that the model yields a simple closed-form

algebraic expression that closely describes measured disper-

sion in microstrip. It is found that only one parameter in

addition to those available from static analyses of microstrip,

such as the MSTRIP program [6], is necessary to describe

microstrip dispersion.

For convenience, the results of this paper are illustrated in

Fig. 1. The symbols are defined in the Nomenclature list. The

dispersion relationships shown in Fig. 1 have been found to

agree with a theoretical prediction [2] based on coupled inte.
gral equations, with published [1] measurements of a 20-f2

microstrip line on a rutile (C$= 104) substrate and with mea-

surements on 0.025- and 0.050-in alumina (e,= 10) substrates.

THE ANALYTICAL MODEL

A conventional microstrip structure is shown in Fig. 2(a).

The fields are concentrated around the edges of the strip and

in the dielectric beneath the center strip. Near the strip

edges, the magnetic field is predominantly normal to and the

electric field predominantly tangential to the air–dielectric

interface. This is characteristic of the LSE mode [5], [7].

The structure of Fig. 2(a) is intractable to direct analysis on

this basis, but its boundaries can be distorted to result in a

model, shown in Fig. 2(b), that can be analyzed.

The electric field lines emanating from the lower surface

of the center strip of the microstrip in Fig. 2(a) pass only

through the substrate dielectric, as do the electric field lines

emanating from the center portion of the model of Fig. 2(b).

The electric fields emanating from the upper surface of the

center strip of the microstrip occupy a much larger space,

which is mostly filled with air. This space is approximated

by the large, air-filled end sections of the model. The mag-
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Fig. 2. (a) Conventional microstrip. (b) LSE model for microstrip.

netic wall (indicated by a dashed line) above the center

strip of Fig. 2(a) is split and the upper wall of the center

strip is unfolded at the edge, stretched out, and bent to form

the end-section boundaries of Fig. 2(b). Thus the model con-

sists of one parallel-plate transmission line, which has a

dielectric constant e,, width 2s, and height b, connected with-

out junction effect to other parallel-plate transmission lines

that have a dielectric constant of one, width a’, and height b’.
The heuristic assumption made is that because the two

regions, air filled and dielectric filled, of the model and the

microstrip are grossly similar, the two structures will have

the same dispersion behavior for the same mode of propaga-

tion. It is clear that junction capacitance could be included

at the steps of the model to make it more realistic, or more
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Iikemicrostrip, butthis would greatly complicate the analysis

and has not been found necessary for practical results.

The model is, after all, only anintuitive aid insetting up

the simplest mathematics that lead to a useful dispersion

relation; it need not be physically realizable,

The analysis proceeds by forcing the model to have the

same electrical characteristics at zero frequency as the micro-

strip. (These characteristics can be found from well-known

and widely available computer programs, such as MSTRIP

[6].) Next, a transverse resonance analysis of the model

relates the propagation constant (or effective dielectric con-

stant) to frequency. A closed-form approximation of this

function is then found and compared with measured micro-

strip dispersion to determine the unknown parameter b’/b
[see Fig. 2(b) ], Finally, the results show that b’/b and related

parameters are nearly constant or linear with characteristic

impedance. Hence, it is possible to derive simple formulas

that can be used to predict the dispersion of microstrip trans-

mission lines.

ZERO-FREQUENCY RELATIONSHIPS

A static analysis such as the MSTRIP program [6] is em-

ployed to yield the effective relative dielectric constant E60

and the characteristic impedance ZO for given w/b, .s,, and

possibly other dimensional parameters, such as strip thick-

ness or proximity of an upper ground plane. [See Fig. 2(a). ]

The inductance L’ and capacitance C’ per unit length of

the microstrip can be written as

L’
— . 3 ~~ (la)

P. %

c’ Jod%o
..— (lb)
eo Zo

respectively, where

(2)

The subscript o indicates free-space values of the constitutive

parameters, while the subscript O indicates zero-frequency

values of the characteristic impedance and effective dielectric

constant.

Inductance and capacitance per unit length for the LSE

model [Fig. 2(b) ] at zero frequency can be written as

L’ 1
—.

!-JO 2 [(a’/b’) + (s/b)]
(3a)

(3b)

respectively. Equating equivalent parameters yields

a! Vo e. — 6G0
_.—

z=
(4a)

zzo~eeo l?, — 1

s 70 Q — 1
— .

i= 2Z04G” e. – 1
(4b)

TRANSVERSE RESONANCE SOLUTION

The sum of the admittances on the left and right of either

air-dielectric interface of Fig. 2(b) must equal to zero ac-

cording to the transverse resonance [5], [7] technique. The

propagation constants are related by

ya2+y2+k.z=0 (5)

in the air-filled section and by

Ys2 + Y2 + c,ko2 = O (6)

in the dielectric-filled section. I n (5), (6), T is the propagation

constant along the transmission line and applies to both air-
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and dielectric-filled sections, while ~a is the constant in the

transverse direction in the air-filled section and -y, is the con-

stant in the transverse direction in the dielectric-filled sec-

tion. Finally,

ko = co/c (7)

is the free-space wave number.

The vertical dashed lines of Fig. 2(b) indicate magnetic

walls or open-circuit boundaries. The characteristic admit-

tances in the two sections are proportional to their propaga-

tion constants and inversely proportional to their heights.

Thus the sum of the admittances at the interface is

‘Y.
tanh yaa’ + ~ tanh T,s = O.

7
(8)

The following approximation is used to solve the preceding

transcendental equation:

1
tanhx =

(l/x) + ($/3) “
(9)

Equation (9) is in error by about 1.5 percent at $ = 1 rad.

As an example of the range of applicability, ~,s = 1.0 for a

25-Q line on a O.OS-in alumina substrate at about 10 GHz. The

use of higher impedances and thinner substrates raises the

frequency at which an error of this magnitude occurs.

Substituting (9) into (8) yields

b’/a’ a’b’ + sb
~+?=. ~ (lo)

782

after some manipulation.

The longitudinal propagation constant can be expressed in

37

When (16) is solved for e, — e. as the dependent variable, a

quadratic results. Its solution is

—

{d 4(,8 – 1)/s
,C, –e,=; l–

1– BZ[{ [a(b’/b)2+s]/3] koz] }
(17)

where

(a+s)/as

B=(c. –l)+ ,
~ [a(b’/b) 2+s]/3 ] k~’

(18)

and the negative root has been selected because it is phys-

ically meaningful.

Equation (17) can be simplified by observing that the

second term under the radical is considerably less than one

for practical cases and then by using the usual square-root

approximation. (For a 25-C! line on a O.OS-in alumina substrate

at 12.5 GHz, the error is about 5 percent.) After a small

amount of algebra, the result is

[(68–i)a]/(a+s)
‘e= ‘8– ~~ko2(as/3) (c,– 1) { [a(b’/b)2+s]/(a+s) ~

, (19)

Substituting (4) and (15) into (19) makes it possible to

express (19) in terms of known quantities, except for the

parameter b’/b; i.e.,

where

Zo
fp=—

2pOb

and

(20)

(21)

G = ~ [(60 – 1) + (b’/b)’(c, – %o)] (%0 – 1)(E,– ‘%0)
(22)

12 6,0(6, — 1)2

terms of the effective dielectric constant; i.e.,

Y2 = —k.2ee. (11)

Substituting (11) into (5) and (6) results in

-ya’ = k.2(ea — 1) (12)

782 = – ko’(q – e,). (13)

Substituting (12) and (13) into (10) yields

b/s _ b’/a’ a’b’ + sb
k02 (14)

es — ~e Q –1= 3

which is the basic dispersion relationship.

The unknown parameters a’ and b’ can be reduced to a

single unknown by assuming that a is the solution of (4a)

when b’ is given the value of b, which is known. That is,

b’

()
a’=a —

b
(15)

where b~/b is the new unknown parameter. When (15) is sub-

stituted into (14), the basic dispersion relationship becomes

1/s l/a a(b’/b) z + s
— — —— ko2. (16)
E* — ee C.—l 3

Nonmagnetic substrates are assumed; therefore, I.LO= 31.9186

nH/in. Equation (20) is the final analytical expression for dis-

persion of microstrip. Investigation of experimental results

shows that G approximates unity.

EVALUATION OF PARAMETERS

Dispersion curves for microstrip lines on alumina sub-

strates 0.025 and 0.050 in thick were measured. The micro-

wave measurements were made on ring resonators [8], and

the l-MHz points were determined from the MSTRIP program

by using the value of the substrate dielectric constant q

found from capacitance measurements of each fully metal-

lized substrate. These data were used to calculate the multi-

plier of~z in (20) that forced a fit at 10 GHz for each micro-

strip line. Then, values of b’/b were calculated using (21) and

(22). The results are shown in Fig. 3, which indicates that

b’/b m3 for characteristic impedances above about 35 !2. The

experimentally determined values of G are also plotted in

Fig. 3.

Equations (20) and (21) clearly demonstrate the nature

of the dependence of the effective dielectric constant on the

substrate thickness b and microstrip characteristic impedence

Zo.

In many engineering applications of microstrip, disper-

sion can be treated as a correction factor to the zero-frequency
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effective dielectric constant e.o; thus only approximate values

are required. In such situations, it is sufficient to assume that

G = 1.0 in (20). For greater accuracy, the curves in Fig. 3,

or an equivalent based on other careful measurements, can

be used. A linear approximation of curves of Fig. 3 is

G = 0.6 + 0.009 Zo. (23)

THE INFLECTION POINT

Study of the dispersion function (20) can provide some

general information about typical dispersive behavior. Equa-

tion (20) shows that the effective dielectric constant goes from

a value of 6,0 at zero frequency to a value of c. at infinite fre-

quency, in agreement with theory [2], and that the slope of

e, with respect to frequency is zero at both extremes. The

frequency of the maximum slope between these two points is

called the inflection point. The requirement that the second

derivative of c, with respect to frequency must equal zero

gives the inflection frequency

(24)

Using (24) in (20) yields the value of the effective dielectric

constant ee~at the inflection frequency:

e,, = +(6. + 3q?o) (25)

and the slope with respect to frequency at e~~:

10.0

9.0

8.0

c,

7,0

6.0

5.0

(26)

/’ .. W/b=l O
b=.025

es=lo.3

● EXPERIMENT

— THEORY

I I I I I I

2 4 6 8 10 12

FREQUENCY Gliz

Fig. 4. Comparison of dispersion function and measurements,

A graphical construction that makes it possible to draw a

straight line tangent to the inflection point of the dispersion

curve has been shown in Fig. 1.

It can be observed that the dispersion and the inflection

relationships agree closely with measured data. Equations

(24) and (25) do in fact predict the frequency and effective

dielectric constant values at which measured dispersion

curves have maximum slope, and that slope is in very good

agreement with (26) for an ideal dispersion function. This de-

tailed agreement between theory and experiment supports

the validity of the LSE model of microstrip propagation.

COMPARISON WITH MEASUREMENTS

The theory developed in this paper will first be compared

with the theoretical prediction of Zysman and Varon [2] for

a microstrip line having the following characteristics: es

=9.7, COO=6.50, .ZO= 50, and b = 0.05 in. The unknown pa-

rameter G will be found from the inflection point formulas

and the graphical data of [2].

Using (25) to calculate the inflection point gives C6;= 7.3;

[2, fig. 5] then gives .f~=9 GHz. Equation (24) predicts

G1
—. = 0.00412.

fpz = 3fi2

Using values given above in (21) yields

50
f, = ;b= = 15.66 GHz.

2 X 31.92 X 0.05

Substituting (28) into (27) yields

G = 0.00412 X 15.662 = 1.01.

(27)

(28)

(29)

This value can be compared with the approximate value

G = 1.0 or the curve-fit formula (23), which gives G = 1.05.

The next problem is to determine the model parameters

of the dispersion measurements on rutile reported by Hartwig

et aJ. [1]. The given parameters are e.= 104, e.. = 62 (calcu-

lated from capacitance measurement), b = 0.05, and ZO = 20

il. However, since the dispersion curve must have a zero slope

at zero frequency, an extrapolation of the measured points

on [1, fig. 3] clearly yields a greater value of C,Othan 62. A

value of 63.5 will be used in these calculations.

Following the same procedure used in the preceding ex-

ample gives e,~= 73.6 and j,= 4.4, so that G/jPz = 0.0172.

Equation (21) gives fp=6.22 GHz; thus G=6.22ZX0.0172

= 0.667. The approximate formula (23) gives G = 0.78. Either

value of G gives a calculated curve that is within the scatter of

the measured points. The first value of G, based on inflection

point formulas, seems to average out a little better, however.

This is reasonable because it is based in part on the data it

characterizes.

The last comparison of theory and experiment is shown

in Fig. 4. The solid-line curves were calculated from the dis-

persion function (20) by using (23) to set the value of G in

each case. The round points are values of effective dielectric

constant measured at CO MSAT Laboratories. The circuits

used were ring resonators [s] on commercial 0.025- and 0.05-

in alumina substrates. In each case, the value of C.. was found

by extrapolating the curve of microwave measurements to

zero frequency. Then, curves generated by the MSTRIP pro-

gram [6] were used to determine a value of e, for the ap-

propriate width-to-height ratio of the line. The shapes and

values of the experimental and theoretical curves are found

to be in good agreement.
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LIMITATIONS AND APPLICATIONS

The basic hypothesis of this paper is that the dispersion

function (20) describes the propagation characteristics of any

microstrip-like transmission line. So far, measurements on

microstrip have supported this point of view.

A more general theoretical investigation than given in this

paper would be necessary to explore the fundamental limita-

tions on applying the dispersion function. Some points can be

considered, however.

The dispersion relation applies only to the fundamental

LSE mode. It probably holds closely only for thin (b <A/4 in

e,) substrates and strips that are not very wide (W <X/3 in

G) to insure that the LSE mode is dominant, but these re-

strictions seldom arise in microstrip applications. Also, the

dispersion relation takes on the correct value at infinite fre-

quency, and so there is no clearly defined upper-frequency

limit at which it no longer applies. The practical upper-fre-

quency limit of microstrip, where every junction and dis-

continuity radiate strongly via surface wave modes [1],

probably occurs before the dispersion function becomes un-

reliable.

Since the dispersion function appears to have general ap-

plicability to all structures having the same types of boun-

daries as microstrip and propagating an LSE mode, it would

be expected to hold for microstrip with or without an enclo-

sure, for the even and odd modes of the parallel-coupled

microstrip, and possibly for other quasi-TEM structures,

such as inhomogeneously loaded coaxial line. It would, of

course, be necessary to have appropriate values for C8, EeO,

2., and G for each structure,

ACKNOWL~DGNIENT

The author wishes to thank Dr. W. J. English for his

technical discussions and T. J. Lynch for his careful measure-

ments.

REFERENCES

[1] C. Hartwig, D. Mass6, and R. Pucel, “Frequency dependent be-
havior of microstrip,” in 1968 G-MTT Symfi. Dig., PD. 110-116.

[2] G, Zysman and D. Varon, “Wave propagation in microstrip trans-
mission lines, ” in 1969 G-A6TT Symp, Dig., pp. 3–9.

[3] O. Jain, V. Makios, and W. Chudobiak, “Coupled-mode model of
dispersion in microstrip,” Elec@osz.-Mt., vol. 7, pp. 405-407, July 15,
1971.

[4] M. V. Schneider, “Microstrip dispersion, ” Pt’oc, IEEE (Special Issue
on Co??@utef’s its Design) (Lett.), vol. 60, pp. 144-146, Jan. 1972.

[5] R. Collin, Field Theory of Guided Waves. New York: McGraw-Hill,
1960, p. 224.

[6] T. G. Bryant and J. A. Weiss, ‘( MSTRIP (parameters of microstrip), ”
IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 418-419,
Apr. 1971,

[7] C. Montgomery, R. Dicke, and E. PurceU, Principles of Microwave
Cir’csJik (M.I.T. Radiation Laboratory Series), vol. 8. New York:
McGraw-Hill, 1948,

[8] P. Troughton, “Measurement techniques in microstrip, n .lUectrots.
Lett., vol. 5, pp. 25-26, Jan. 23, 1969.

Nonlinear Analysis of’ the SchottkY-Barrier Mixer Diode

DOMINIC A. FLERI AND LEONARD D. COHEN

Abstract—The waveshape of the local-oscillator voltage compo-
nent that exists across the nonlinear junction of a Shottky-barrier
diode is a fundamental determinant of mixer performance. This
waveshape significantly dlff ers from that of the total local-oscillator
voltage impressed across the diode terminals since it is influenced
by parasitic, particularly spreading resistance and contact induc-
tance, which exist in series with the junction. The junction-voltage
waveshapes resulting from a 9.375-GHz sinusoidal local-oscillator
generator voltage are computed for three common equivalent-
circuit models of the diode. In the first model the diode is repre-
sented by a nonlinear conductance in series with a fixed spreading
resistance. The second model includes the nonlinear capacitance
associated with the junction, and the thhd addhionally includes the
contact inductance. In each case, the junction-voltage waveshape is
significantly nonsinusoidal. It is shown that the contact inductance
can induce a peak inverse junction voltage that greatly exceeds the
peak voltage impressed across the diode terminals. Thk parasitic
reactance thus can have an important bearing on the burnout proper-
ties of the mixer diode.
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1. INTRODUCTION

o

VER THE YEARS, a number of investigators [I]-

[6] have published detailed mathematical treatments

for determining the performance characteristics of

semiconductor diode heterodyne mixers. These techniques

basically involve the formulation of an admittance matrix or

equivalent set of parameters, which describes the linearized

small-signal current–voltage relations that exist among the

coupled-signal, image, and intermediate frequency voltage

components in the mixer. The admittance matrix facilitates

the analytical determination of mixer conversion loss, as

well as the associated RF and I F impedances. In general, the

matrix elements are functions of both the amplitude and

waveshape of the local-oscillator voltage component that

exists across the nonlinear junction of the semiconductor

diode. This waveshape was assumed to be sinusoidal by the

early investigators because it was not practical to derive the

exact waveshapes with the computational facilities then

available. This assumption has been perpetuated over the

years and is retained even in present-day analyses. As was

pointed out by Barber [7], however, the actual waveshape of

the local-oscillator junction voltage is significantly non-


